Chapitre 6

Polynômes d'endomorphismes

Soit u un endomorphisme d'un espace vectoriel E sur \mathbb{K} . Soit $A \in \mathcal{M}_n(\mathbb{K})$.

5.1 Définition

On remplace X^k par u^k (ou A^k) et 1 par Id_E (ou I_n). Soit $P(X) = a_0 + a_1 X + a_2 X^2 + ... \in \mathbb{K}[X]$ un polynôme. On pose :

$$P(u) := a_0 \text{Id}_E + a_1 u + a_2 u^2 + \dots \text{ et } P(A) := a_0 I_n + a_1 A + a_2 A^2 + \dots$$

Proposition 5.1.1 L'application :

$$\mathbb{K}[X] \to \mathscr{M}_n(\mathbb{K}), P(X) \mapsto P(A)$$

est un morphisme d'algèbres i.e. : c'est linéaire et :

$$\forall P, Q \in \mathbb{K}[X], (PQ)(A) = P(A)Q(A)$$

de même l'application:

$$\mathbb{K}[X] \to \operatorname{End}_{\mathbb{K}}(E), P(X) \mapsto P(u)$$

est aussi un morphisme d'algèbres.

Démonstration : Si $P(X) = a_0 + a_1 X + ...$ et $Q(X) = b_0 + b_1 X + ...$, alors $PQ(X) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + ...$. Donc :

$$(PQ)(A) = a_0b_0I_n + (a_0b_1 + a_1b_0)A + \dots$$

= $(a_0I_n + a_1A + \dots)(b_0I_n + b_1A + \dots)$

$$= P(A)Q(A)$$
.

q.e.d.

Remarque: [importante] En particulier, pour tous $P,Q \in \mathbb{K}[X]$, les matrices P(A) et Q(A) commutent :

$$P(A)Q(A) = Q(A)P(A)$$

de même les endomorphismes P(u) et Q(u) commutent.

EXEMPLE: — Polynôme d'une diagonale:

$$D := \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix}$$

on a:

$$P(D) = \begin{pmatrix} P(\lambda_1) \\ P(\lambda_n) \end{pmatrix}$$

pour tout polynôme $P(X) \in \mathbb{K}[X]$.

— polynôme et conjugaison : Si Q est inversible, si $A = QA'Q^{-1}$, alors pour tout polynôme $P(X) \in \mathbb{K}[X], P(A) = QP(A')Q^{-1}$.

Exercice 39 Montrer que plus généralement, pour une matrice triangulaire :

$$T:=\left(egin{array}{cccc} \lambda_1 & & & & \\ & & & & \\ & & & \lambda_n \end{array}
ight)$$

 $on \ a :$

$$P(T) = \begin{pmatrix} P(\lambda_1) & & \\ & & \\ & & P(\lambda_n) \end{pmatrix}$$

pour tout polynôme $P(X) \in \mathbb{K}[X]$ (les coefficients hors de la diagonale peuvent avoir une expression compliquée mais les coefficients diagonaux sont obtenus simplement en leur appliquant le polynôme P).

5.2 Théorème de Cayley-Hamilton

Définition 47 On dit qu'un polynôme P(X) est un polynôme annulateur de la matrice A ou de l'endomorphisme u si P(A) = 0, ou si P(u) = 0.

EXEMPLE : — Si $p:E\to E$ est une projection, X^2-X est un polynôme annulateur de p car $p^2=p$.

— Si $r: E \to E$ est une réflexion, X^2-1 est un polynôme annulateur de r car $r^2=\mathrm{Id}_E.$

Où chercher les valeurs propres, connaissant un polynôme annulateur mais ne connaissant pas le polynôme caractéristique?

Proposition 5.2.1 Si P est un polynôme annulateur de u, respectivement de A, alors :

$$Sp(u) \subseteq \{ \text{ racines de } P \}$$

respective ment

$$Sp(A) \subseteq \{ \text{ racines de } P \} .$$

 $D\acute{e}monstration\;$: Si x est un vecteur propre de u associé à une valeur propre $\lambda,$ alors :

$$u(x) = \lambda x \Rightarrow \forall k \ge 0, u^k(x) = \lambda^k x$$

et plus généralement :

$$Q(u)(x) = Q(\lambda)x$$

pour tout polynôme Q(X). En particulier : $P(u)(x) = 0 \Rightarrow P(\lambda)x = 0$ $\Rightarrow P(\lambda) = 0 \text{ car } x \neq 0.$ $\underline{q.e.d.}$

Théorème 5.2.2 (de Cayley-Hamilton) Si E est de dimension finie,

$$\chi_u(u) = 0$$

de même $\chi_A(A) = 0$.

Exemple: — Si:

alors : $\chi_N(X) = X^n$ et $\chi_J(X) = X^n - 1$ et on a bien $N^n = 0$ et $J^n = I_n$. Démonstration (s) du théorème :

1ère démonstration (algébrique):

Notons $B(X) \in \mathcal{M}_n(\mathbb{K}[X])$ la transposée de la comatrice de $XI_n - A$. Tous les coefficients de la matrice B(X) sont des polynômes à coefficients dans \mathbb{K} de degré $\leq n-1$. Il existe donc des matrices :

$$B_0,...,B_{n-1} \in \mathscr{M}_n(\mathbb{K})$$

telles que :

$$B(X) = B_0 + XB_1 + \dots + X^{n-1}B_{n-1} .$$

On a alors:

$$B(X)(XI_n - A) = \det(XI_n - A)I_n$$

$$\Leftrightarrow (B_0 + XB_1 + \dots + X^{n-1}B_{n-1})(XI_n - A) = \chi_A(X)I_n$$

(on développe la partie gauche)

$$\Leftrightarrow -B_0A + X(B_0 - B_1A) + X^2(B_1 - B_2A) + \dots + X^{n-1}(B_{n-2} - B_{n-1}A) + X^nB_{n-1}A + X^nB_{$$

$$(5.1) = \chi_A(X)I_n$$

Notons $c_0, ..., c_n \in \mathbb{K}$ les coefficients du polynôme caractéristique :

$$\chi_A(X) = c_0 + \dots + c_n X^n$$

 $(c_0 = \pm \operatorname{d\acute{e}t} A, c_n = 1)$ On a donc d'après (5.1):

$$-B_0 A = c_0 I_n$$

$$B_0 - B_1 A = c_1 I_n$$

...

$$B_{n-1} = c_n I_n$$

et donc:

$$\chi_A(A) = c_0 I_n + c_1 A + \dots + c_n A^n$$

$$= -B_0 A + (B_0 - B_1 A) A + (B_1 - B_2 A) A^2 + \dots + (B_{n-2} A^{n-1} - B_{n-1}) A^{n-1} + B_{n-1} A^n$$

$$= 0$$

car « tout se simplifie ».

5

5.3 Polynômes annulateurs

Un polynôme annulateur d'un endomorphisme u de E est un polynôme $P \in \mathbb{K}[X]$ tel que P(u) = 0. Par exemple, en dimension finie : $\chi_u(X)$. Un polynôme minimal de u est un polynôme annulateur de u, non nul, de degré minimal.

Exemple: Des polynômes minimaux des matrices:

$$O, I_n, N := \begin{pmatrix} 0 & 1 & 0 & 0 \\ | & & & | \\ | & & & 0 \\ | & & & 1 \\ 0 & & & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}),$$

sont respectivement : $X, X - 1, X^n$.

Rappels sur la division euclidienne:

Soient P,Q deux polynômes dans $\mathbb{K}[X]$. Si $Q\neq 0$, alors il existe un unique couple (B,R) tels que :

$$B, R \in \mathbb{K}[X], P = BQ + R \text{ et } \deg R < \deg Q$$

(R peut éventuellement être nul).

Démonstration : Unicité : si $B_0Q+R_0=B_1Q+R_1=P$ et deg $R_{0,1}<$ deg Q , alors $R_0-R_1=(B_0-B_1)Q$ et deg $(R_0-R_1)<$ deg Q; donc forcément, $R_0-R_1=0$ et $R_0=R_1\Rightarrow B_0=B_1$.

Existence : On raisonne par récurrence sur le degré de P. Si deg $P < \deg Q$, il suffit de choisir B = 0 et R = P. Sinon :

$$P = a_0 + \dots + a_p X^p, Q = b_0 + \dots + b_q X^q$$

avec $a_i, b_j \in \mathbb{K}, \, a_p, b_q \neq 0, \, p \geq q.$ Il suffit alors d'appliquer l'hypothèse de récurrence au polynôme

$$P - \frac{a_p}{b_q} X^{p-q} Q$$

dont le degré est < deg P.

q.e.d.

*

Proposition 5.3.1 Soit $m_u(X)$ un polynôme minimal de u. Alors, m_u DI-VISE TOUS LES POLYNÔMES ANNULATEURS DE u. $D\acute{e}monstration : Si \ P(u) = 0,$ on fait la division euclidienne de P par m_u :

$$P = Bm_u + R$$

où $\deg R < \deg m_u$. On a :

$$0 = P(u) = \underbrace{B(u)m_u(u)}_{=0} + R(u) \Rightarrow R(u) = 0$$

et R(X) est un polynôme annulateur de u de degré < deg m_u . Forcément, R=0 et $m_u(X)diviseP(X)$. q.e.d.

Il existe donc au plus un unique polynôme minimal unitaire (i.e. son coefficient de plus haut degré vaut 1) de u (exo) c'est LE polynôme minimal de u.

Remarque: Si E est de dimension finie, $\chi_u(X)$ est un polynôme annulateur de u (non nul) donc dans ce cas, le polynôme minimal existe toujours de plus :

$$m_u(X)$$
 divise $\chi_u(X)$

dans $\mathbb{K}[X]$.

On définit de même les polynômes annulateurs et le polynôme minimal d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$.

Exercice 40 Si E est de dimension finie, le polynôme minimal de u coïncide avec le polynôme minimal de sa matrice dans n'importe quelle base de E.

Proposition 5.3.2 Soit P un polynôme annulateur de u un endomorphisme de E. Alors, pour tout $\lambda \in \operatorname{Sp}(u)$, $P(\lambda) = 0$. En particulier si le polynôme minimal m_u existe, $m_u(\lambda) = 0$ pour toute valeur propre λ de u.

Démonstration : Si $u(x)=\lambda x,\ 0\neq x\in E.$ Alors, $0=P(u)(x)=P(\lambda)x\Rightarrow P(\lambda)=0.$ q.e.d.

Proposition 5.3.3 Les racines de $m_u(X)$ sont exactement les valeurs propres de u c-à-d (si $m_u(X)$ existe):

$$\forall \lambda \in \mathbb{K}, \ m_u(\lambda) = 0 \Leftrightarrow \lambda \in \mathrm{Sp}(u) \ .$$

Démonstration : Il suffit de démontrer que si $m_u(\lambda) = 0$, alors λ est une valeur propre de u. Or dans ce cas, $m_u(X) = (X - \lambda)Q(X)$ pour un certain polynôme Q(X) de degré $< \deg m_u(X)$. Donc :

$$0 = m_u(u) = (u - \lambda \operatorname{Id}_E)Q(u) .$$

7

Forcément $Q(u) \neq 0$ par minimalité de m_u . Donc $u - \lambda \operatorname{Id}_E$ n'est pas injective et donc λ est une valeur propre de u. q.e.d.

Comment trouver le polynôme minimal d'une matrice?

Théorème 5.3.4 Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que le polynôme caractéristique est scindé :

$$\chi_A(X) = (X - \lambda_1)^{m_1} ... (X - \lambda_r)^{m_r}$$

où $m_1,...,m_r \geq 1, \lambda_1,...,\lambda_r \in \mathbb{K}$, sont deux à deux distincts. Alors :

$$m_A(X) = (X - \lambda_1)^{k_1} ... (X - \lambda_r)^{k_r}$$

pour certains entiers : $1 \le k_i \le m_i$, i = 1, ..., r.

 $D\acute{e}monstration$: On note $k_1,...,k_r$ les multiplicités de $m_A(X)$ en les valeurs propres $\lambda_1,...,\lambda_r$. On a déjà vu que $1 \leq k_i$ car $m_A(\lambda_i) = 0$. On a aussi $k_i \leq m_i$, la multiplicité de λ_i dans $\chi_A(X)$. Il reste donc à démontrer le lemme suivant :

Lemme 5.3.5 On suppose que le polynôme P(X) divise le produit

$$(X-\lambda_1)^{m_1}...(X-\lambda_r)^{m_r}$$

dans $\mathbb{K}[X]$ pour certains $\lambda_i \in \mathbb{K}$ deux à deux distincts et certains entiers $m_i \geq 1$. Alors si on note $k_1, ..., k_r$ les multiplicités respectives des $\lambda_1, ..., \lambda_r$ dans P(X), on a :

$$P(X) = a_d(X - \lambda_1)^{k_1} ... (X - \lambda_r)^{k_r}$$

où a_d est le coefficient dominant de P.

Démonstration du lemme : On peut supposer P unitaire i.e. $a_d = 1$. On raisonne par récurrence sur $r \geq 0$. Si r = 0, il n'y a rien à montrer. Notons $Q(X) \in \mathbb{K}[X]$ le quotient par P(X):

$$(X - \lambda_1)^{m_1}...(X - \lambda_r)^{m_r} = P(X)Q(X)$$
.

La multiplicité de λ_1 dans Q(X) est : $m_1 - k_1$. Donc :

$$P(X) = (X - \lambda_1)^{k_1} \tilde{P}(X)$$
 et $Q(X) = (X - \lambda_1)^{m_1 - k_1} \tilde{Q}(X)$

d'où:

$$(X - \lambda_1)^{m_1} ... (X - \lambda_r)^{m_r} = (X - \lambda_1)^{m_1} \tilde{P}(X) \tilde{Q}(X)$$

$$\Leftrightarrow (X - \lambda_1)^{m_2} ... (X - \lambda_r)^{m_r} = \widetilde{P}(X)\widetilde{Q}(X)$$

et on applique l'hypothèse de récurrence.

q.e.d.

Remarque: Un cas particulier important à retenir : les diviseurs unitaires de $(X - \lambda)^n$ sont les $(X - \lambda)^d$ avec $0 \le d \le n$ (pour tous $n \ge 0, \lambda \in \mathbb{K}$).

q.e.d.

Exercice 41

A	$\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \end{array}\right)$	$\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \end{array}\right)$	$\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \end{array}\right)$
	0 0 0 0	0 0 1 0	0 0 1 0
	0 0 0 1	0 0 0 0	0 0 0 1
$\chi_A(X)$	X^4	X^4	X^4
$m_A(X)$	X^2	X^3	X^4

Exercice 42 (Polynôme minimal d'une diagonale) Soit

$$D := \begin{pmatrix} \lambda_1 & & \\ & \lambda_n \end{pmatrix}$$

alors $m_D(X) = \prod_{\lambda \in \operatorname{Sp}(D)} (X - \lambda)$ où $\operatorname{Sp}(D) = \{\lambda_1, ..., \lambda_n\}$ et les valeurs propres sont comptées sans multiplicité.

Nouveau critère de diagonalisabilité

On dit qu'un polynôme $P(X) \in \mathbb{K}[X]$ est scindé à racines simples dans \mathbb{K} s'il se factorise en :

$$P(X) = a_d(X - \lambda_1)...(X - \lambda_r)$$

où $0 \neq a_d \in \mathbb{K}$ et $\lambda_1, ..., \lambda_r \in \mathbb{K}$ sont deux à deux distincts.

Théorème 5.3.6 Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable sur \mathbb{K} si et seulement si son polynôme minimal est scindé à racines simples sur \mathbb{K} .

 $D\'{e}monstration: \Rightarrow :$ Si A est diagonalisable, A est semblable à une diagonale. Or deux matrices semblables ont le même polynôme minimal (exo)